ECG_UNET¶
- class torch_ecg.models.ECG_UNET(classes: Sequence[str], n_leads: int, config: Optional[torch_ecg.cfg.CFG] = None)[source]¶
Bases:
torch.nn.modules.module.Module
,torch_ecg.utils.utils_nn.CkptMixin
,torch_ecg.utils.utils_nn.SizeMixin
,torch_ecg.utils.misc.CitationMixin
U-Net for (multi-lead) ECG wave delineation.
The U-Net is a fully convolutional network originally proposed for biomedical image segmentation 1. This architecture is applied to ECG wave delineation in 2. This implementation is based on an open-source implementation on GitHub 3.
- Parameters
References
- 1
Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks for biomedical image segmentation.” International Conference on Medical image computing and computer-assisted intervention. Springer, 2015.
- 2
Moskalenko, Viktor, Nikolai Zolotykh, and Grigory Osipov. “Deep Learning for ECG Segmentation.” International Conference on Neuroinformatics. Springer, Cham, 2019.
- 3
- compute_output_shape(seq_len: Optional[int] = None, batch_size: Optional[int] = None) Sequence[Optional[int]] [source]¶
Compute the output shape of the model.
- forward(input: torch.Tensor) torch.Tensor [source]¶
Forward pass of the model.
- Parameters
input (torch.Tensor) – Input signal tensor, of shape
(batch_size, n_channels, seq_len)
.- Returns
output – Output tensor, of shape
(batch_size, n_channels, seq_len)
.- Return type
- inference(input: torch.Tensor, bin_pred_thr: float = 0.5) torch.Tensor [source]¶
Method for making inference on a single input.